# Integer

## `Integer`

The standard type Integer represents the mathematical concept of integer. Integer is itself an instance of the metatype PrimitiveType (from UML).

conformsTo `Real`

Operations

`*(i : OclSelf[?]) : Integer[1]` precedence: `MULTIPLICATIVE`

The value of the multiplication of `self` and i.

`+(i : OclSelf[?]) : Integer[1]` precedence: `ADDITIVE`

The value of the addition of `self` and i.

`-() : Integer[1]` precedence: `UNARY`

The negative value of `self`.

`-(i : OclSelf[?]) : Integer[1]` precedence: `ADDITIVE`

The value of the subtraction of i from `self`.

`/(i : OclSelf[?]) : Real[1] invalidating` precedence: `MULTIPLICATIVE`

The value of `self` divided by i. Evaluates to `invalid` if r is equal to zero.

`abs() : Integer[1]`

The absolute value of `self`.

`div(i : Integer[?]) : Integer[1]`

The number of times that i fits completely within `self`.

`max(i : OclSelf[?]) : Integer[1]`

The maximum of `self` an i.

`min(i : OclSelf[?]) : Integer[1]`

The minimum of `self` an i.

`mod(i : Integer[?]) : Integer[1]`

The result is `self` modulo i.

`toString() : String[1]`

Converts `self` to a string value.

`toUnlimitedNatural() : UnlimitedNatural[1]`

Converts a non-negative `self` to an UnlimitedNatural value. A negative `self` is converted to `invalid`. An automatic coersion may be synthesized if the coercion enables an operation reference to be resolved in an expression where no operation was available without coercion.